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Silliman’s analysis of slot coating is extended to accommodate film flows with highly bent 
menisci. as in slide and curtain coating, by combining polar and Cartesian coordinate 
parametrizations of meniscus shape. The nonhnear algebraic equations from the 
subdomain/Galerkin weighted residual method and finite element basis functions are solved 
by Newton’s method, which is perfected for the free boundary problem. Convergence behavior 
is examined. Slot-coating results reveal slow-flow zones and show that at high capillary 
number and low metering rate the downstream meniscus can no longer attach to the dot. 
Comparison of Coyne and Elrod’s approximate solutions with the finite element solutions 
shows that their assumption of a parabolic velocity profile leads to reasonable approximations 
of meniscus shapes. 

1. INTRODUCTION 

Viscous free-surface flows are important in coating technology, po!ymer 
processing, and other engineering applications as we11 as in certain areas of science. 
For understanding, designing and controlling such flow systems, computer-aided 
analysis by the finite element approach is very promising (Nickel1 et al. [ 121, Tanner 
ef al. 1271: Tanner (281, Orr and Striven [ 141, Silliman and Striven [20. 2!, 241, 
Chang et al. 131). This approach is a combination of the weighted residual methods 
of subdomains and of Galerkin, with simple basis functions that are designed for 
computational advantage. A curved free surface, or meniscus! by its presence 
generally makes the flow problem nonlinear whether or not curvilinear acceleration of 
the fluid does so too. Then the finite element approach reduces the mathematical 
problem of steady flow to a large set of simultaneous, nonlinear, algebraic equations. 
This set has to be solved iteratively. 

Whether a given first approximation and chosen iteration process converge to a 
solution and, if they do, the rate of convergence, are matters crucial to the success of 
the finite element or any other discretization approach. Free surfaces raise special 
difficulties which until now have not been resolved. This paper addresses 6) the 
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FIG. 1. Slot-coating flow with fixed contact line. 

means of representing the free surface, and (ii) the application of Newton’s iteration 
process to the algebraic equation set. The paper also reports results on flow out of a 
slot which go beyond the pioneering study by Silliman and Striven [23,25]. 

We restrict consideration to steady, two-dimensional, viscous free-surface flow of 
an incompressible, Newtonian liquid carried out of a narrow slot by a moving 
substrate (Fig. 1). On the surface the boundary conditions are (1) the shear stress 
exerted by the adjacent gas phase is negligible, and (2) the normal stress, i.e., the 
pressure, exerted by the adjacent gas is balanced by the sum of the pressure and 
normal viscous stress exerted by the liquid and the capillary pressure in the surface 
itself (capillary pressure is the product of surface tension by twice the mean surface 
curvature). But the location of the free surface is unknown a priori, and so an 
additional boundary condition is relevant: (3) the surface is indeed the gas-liquid 
interface and velocity is continuous into that interface-the kinematic boundary 
condition. Within the liquid the governing equations are of course the continuity 
equation and the Navier-Stokes equation, suitably specialized (see below). Were the 
free surface not free, two boundary conditions wQuld suffice at it. That there are three 
boundary conditions to be satisfied is one source of the difftculties that have been 
encountered. 

Heretofore the iteration schemes used have been successive approximation 
techniques, types of functional iteration sometimes called Picard methods (Isaacson 
and Keller 191, Rheinboldt 115 J). They proceed in a three-part cycle: (1) a free- 
surface shape is assigned; (2) a flow field within that shape is found from the 
Navier-Stokes equation system with one of the free-surface boundary conditions 
omitted, viz., the kinematic condition, the normal stress balance, or the vanishing of 
shear stress; (3) the free-surface shape is revised to satisfy as closely as possible the 
previously omitted boundary condition; (1) on the basis of the revision a new shape 
is assigned. If the process converges, the cycle is repeated until the desired 
convergence is achieved. Unfortunately the process does not always converge, 
regardless of which boundary condition is chosen for iteration, and regardless of the 
iteration scheme used in step 2. There was controversy about iterating on the 
kinematic condition (Tanner 1281) and normal stress condition (Orr and Striven 1141) 
until Silliman and Striven [23, 241 showed that when the capillary number 
NC, =,uU/cr, which measures the ratio of normal stress to capillary pressure, falls 
below unity, normal stress iteration converges well and kinematic iteration eventually 
fails, whereas as Nc, rises beyond unity, the performances of the two iteration 
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schemes are reversed. Silliman [23] went on to demonstrate that it is possible to 
avoid Picard iteration and iterate on the full equation set, thereby finding the flow 
field and free-surface location simultaneously. 

This demonstration made use of a variant of Newton’s iteration process, which 
proved capable of converging at any value of N,,. However, the convergence rate 
was still highly dependent on the value of NC,, becoming excessively siow when 
N,., > 10. 

In this paper we show that when the Jacobian matrix which is used in Newton 
iteration of the full equation set is calculated correctly, the convergence rate is 
strikingly improved; moreover, it becomes second order, or quadratic, as it proceeds, 
in accord with the asymptotic theory of the method (Isaacson and Keller 191). in the 
variant employed in Silliman’s demonstration, the derivatives with respect to free- 
surface location of those residuals that are area integrals were neglected. Such 
derivatives are required for any free-surface problem and so we have shown how to 
derive them in general, as reported in detail elsewhere (Saito and Striven [IS]). 

A great attraction of Newton’s process, besides rapid convergence when suitable 
first approximations can be generated, is the wealth of information contained in the 
Jacobian of the converged solution (Silliman and Striven 1221, Brown et ai. 12j). 
Here we provide additional illustrations of the use of that information, i.e., sensitivity 
analysis and first-order continuation with respect to a parameter. 

khether Picard or Newton iteration is used, Silliman’s computer code converges 
less and less well and then diverges as the dimensionless flow rate out of the slot is 
reduced. As that flow diminishes, the free surface bends more and more until the 
representation used in the code becomes singular. This type of difficuity -with a 
representation is not uncommon in free-surface problems, and places a restriction on 
the range of parameter values that can be handled. In this paper we establish a 
method to avoid the difficulty by representing the free surface with a combination of 
different parametrizations of it, each of them the most convenient one for some part 
of it. In particular, we combine Cartesian-spine and radial-spine representations 
where Silliman’s code made use of the former alone. This approach, which shouid be 
simpler than Ruschak’s [ 171 general spine version, like it greatly enlarges the range 
of accessible parameter values and is applicable to a variety of flow problems. 

2. ORIGINAL MATHEMATICAL FORMULATION 

The weak form of the Navier-Stokes and continuity equations for steady, two- 
dimensional, incompressible Newtonian flow is well established and the finite eiement 
version follows immediately. The basis, or interpolation, functions are chosen for 
expanding the component velocities, which here we take to be Cartesian components, 
the pressure, and the location of the free surface, or meniscus (Silliman and 
Striven 124 I): 
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FIG. 2. Silliman’s tessellation of the flow domain for the slot-coating problem. The vertical scale is 
exaggerated by a factor of 2. 

where r is the position vector and r,, is that of a suitably chosen reference surface 
from which distance h to the free surface is measured. The basis functions f, rj’ and 
2 are to be distinguished from their counterparts #‘(<, q), I#(& ?I), and x’(c) in the 
(<, q) domain introduced below. Each basis function is nonzero only on the 
subdomain consisting of elements contiguous to its node. Figure 2 shows a typical 
tessellation. The elements are defined by spines of constant x and curved sides are so 
located that the thicknesses of successive ranks of elements are in constant ratios to 
the distance between the free surface and the web. For convenience each curvilinear 
(x, y)-element is mapped isoparametrically into the fixed (5, n)-domain as shown in 
Fig. 3; then (Strang and Fix [26]) 

where X, and Yi are the coordinates of the ith node in an element. 
Following Silliman (231 we employ conventional “mixed interpolation” with nine- 

node quadratic basis functions 4’ for velocity, four-node bilinear ones I# for pressure, 
and Hermite cubic ones ,$ for free-surface location. (In the cubic elements separate 
functions are associated with h and its derivative at each node: cf. Strang and 
Fix 1261.) With body forces put aside, the momentum equations are 

M,- / d’(-V.TfN,,uVu)dA 
‘A 

F j (Vgi . T + #iNRe~ . Vu) dA - jiA #‘n . T ds = 0, 
n 

(3) 

CEFOHME~ DOMAIN A REFERENCE DOMAIN A, 

FIG. 3. lsoparametric mapping, i.e., mapping by the polynomial function of the finite element itself. 
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where the stress tensor is T = -pi + [Vu + (Vu)r]. 8A is the boundary of the flow 
domain A, and Nxe F Ud/u. M, is the momentum residual, which vanishes when the 
requirement of momentum conservation is met. The variables are all dimensionless, 
length being measured in units of gap width d, velocities in units of web speed Ii’, and 
pressures in units of pvU/d, where p is density and v is kinematic viscosity. On the 
boundaries, n and t are the unit normal and tangent; in terms of h(x): 

n i 1 1 -h,if j\ 

t = 6-c l+h* x i + h,j I9 

where i and j are unit vectors in X- and y-directions. The traction II . T in (3) can be 
decomposed into normal and tangential parts to use later in the boundary conditions 
at the free suface: thus 

Mi = [ (v# . T + &NRru . Vu) d4 - 4 #(nnn : T f tnt : T) ds = 0. (4) 
-A -’ 6 A 

The continuity equations are 

ci 55 i l/v . u dA = 0. (5) 
i A 

Cj is the mass residual, which vanishes when the requirement of mass conservation is 
met. 

At the inlet the velocity distribution is fully deveioped Couette-Poiseuiile flow 
g(.v) that satisfies no-slip conditions on the web and the wall, i.e., ~(0) = -1 and 
,y( 1) = 0. The net flow is Q = j g dy. At the outlet there is supposed to be no diffusive 
outflow of momentum. Thus the boundary conditions, apart from those on the free 
surface. are 

At the inflow n . u = 8(4’), t.u=o, 

At the outflow nn : T = 0, t.ll=o, 

On the wall nau=O, t*u=o. 

On the web n.u=O, t .u=--1. 

(6; 

Of these, ali except nn : T = 0 at the outlet are essential boundary conditions. At the 
free surface. following Silliman, we take the kinematic condition as an essential one 
and the shear stress condition as a natural one: 

At the free surface n.u=O, nt : T = 0. (5) 

This choice leaves the normal stress condition autonomous among the free-surface 
boundary conditions, i.e., its residual is to be made orthogonal to the basis functions 
defining the position of the free surface. Elsewhere we have shown 1 i g j that in the 
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case of the die swell problem this is superior to choosing either the kinematic or the 
shear stress boundary condition as the autonomous one. 

In the Galerkin or weak form the normal stress boundary condition is 

Fi E 
1 

x’(2H - NC, IUI : T) do* s 0, (8) 
-s, 

where the surface tension 0 of the liquid is in N ca -,DU/U, H is the mean curvature of 
the free surface and the integration is defined on a reference surface .s*--here its 
profile, the x-axis-for the purpose of integrating the curvature term by parts later. 
Ambient pressure is set to zero as the datum for the pressure. The mean curvature is 
defined as H= - ;V, . n, where V, is the surface gradient operator on the free 
surface. For the Cartesian parametrization, 

2Hs-V,.n=-V, .n=d 
dx (&k$ 

where V, is a gradient on the planar reference plane (i(Z/lax) in the two-dimensional 
case here) (Orr [ 131). Thus with the surface divergence theorem (Weatherburn 129)) 
Eq. (8) becomes 

Fi = 1 (n . b,$ - xiNc,nn : T) ds* - [ Xin . m,y ds 
i s, ’ 6s * 

where m, is the outward pointing normal vector on the boundary s.+ and x, and xz 
are x-coordinates at the end points of the free-surface profile. Formulation (10) 
derived from (8) and (9) by the divergence theorem (equivalently integration by parts 
in the two-dimensional case here) is quite convenient, because (i) lower-order basis 
functions can be used for the free surface since Eq. (10) contains only first-order 
derivatives with respect to x instead of the original second-order derivatives in 2H, 
and (ii) boundary conditions on the slope at the end points can be easily introduced 
as natural boundary conditions. Boundary conditions for the free-surface position are 
the fixed separation line at the edge of the slot exit, an essential boundary condition; 
and vanishing slope at the downstream section, a natural boundary condition: 

At the separation line h= 1. 

At the outflow section h, = 0. 
(11) 



FINITE ELEMENT ANALYSIS OF COATING FLOW 59 
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FIG. 4. Dependence of meniscus profile on Reynolds number N,,. and capillary number. .lrC.C. 

according to Silhman’s code 1231. The vertical scale is exaggerated by a factor of 2. 

In Silliman’s code the x-component of (4), simplified with (7f, is retained for 
elements adjoining the free surface: 

MTci.Mi=O (12) 

and the y-component there is replaced by the kinematic condition at free-surface 
nodes of the tessellation, 

&al’. u=o. (131 

The finite element equations are the following set of nonlinear algebraic equations: 
x-- and y-components of (3) when 6’ belongs to any interior node; x-components of 
(3) with naturai boundary conditions (6) at the outflow; (12) and (13) along free- 
surface sides of elements adjacent to the free surface; (5) for every pressure node: and 
(10) for free-surface nodes except at those where boundary conditions (I 1) are 
imposed. This set is solved simultaneously by Newton’s iteration process in Siiliman’s 
code. 

Among many calculations with the code we found convergence difficulties 
mounting as web speed was upped and N,, and N,, grew large at fixed flow rate Q. 
Figure 4 shows the progression of free-surface shapes. As meniscus inclination at the 
separation line (static contact line) approached vertical, i.e., dh/dx -+ co, convergence 
worsened: indeed the code could not calculate any case in which the meniscus enters 
the slot. We found the same behavior when we diminished Q at fixed NRe and N?,. 
Because high web speed and low flow rates are quite important in practice, we sought 
to overcome the difficulty, which can be traced to singularity of the Jacobian in 
Newton’s method when the meniscus is nearly vertical. 

3. REFORMULATION WITH COMBINED FREE-SURFACE REPRESENTATIONS 

A simple way to avoid the difficulty is to represent the free surface near the 
separating contact line with a polar coordinate parametrization f(B), where 0 is an 
azimuthal angle. On one of the radial spines through the polar center this 
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LINE OF MATCt’l’JG 

FIG. 5. Combined tessellation of the low domain for the slot-coating problem. The vertical is 
exaggerated by a factor of 2. 

parametrization must be matched with thecartesian-spine representation downstream, 
and the elements beneath the highly curved meniscus must be matched to those 
beneath the less curved meniscus downstream. Also, there must be suitable matching 
with rectangular elements upstream when they are employed, as they are here. 

Figure 5 illustrates the idea with a tessellation in which the position of the free 
surface, or meniscus, in Region B is represented by the polar arm of length f(0) and 
in Region A it is represented in the usual way by height h(x) above the web. The two 
representations join at the matching line. 

In the finite element formulation the expansions at Eqs. (1) and (2) remain 
unchanged except that 

in Region A, 

in Region B, 
(14) 

at the matching point P, in Fig. 6. (15) 

Equations (15) guarantee continuity of the two-piece surface representation and of its 
slope. 

In the original formulation the assembled subdomain momentum equations 
associated with free-surface nodes were resolved into x- and y-components and the 
latter were replaced by kinematic conditions at Eqs. (12) and (13). This procedure we 

FIG. 6. Double-point of the free surface, where the two coordinate parametrizations arc matched. 
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found to break down, as expected, when at any point on the free surface the tangent 
approaches the direction of the y-axis. A logical procedure from the standpoint of 
taking the vanishing of shear stress as a natural boundary condition and leaving the 
normal stress balance as the autonomous one is to resolve the momentum equations 
into tangential and normal components and to replace the normal components by the 
kinematic conditions. Thus Eq. (12) is replaced by 

M;st 4 M,=O. 

The normal and tangent along the free surface are 

= G& (i:it,‘, in Kegion A, 

in Region B, 

where e, and e, are unit vectors in the r- and $-directions and a = -f cos 0 -f, sin 0 
and 0 = .-f’ sin 0 if, cos 8. The results described below confirm that this procedure 
avoids the earlier difficulty and leads to correct solutions. 

In terms of polar coordinates the curvature of a two-dimensional surface is 

where the reference surface is taken to be a unit circle and the surface gradient V, on 
the reference surface is V, s e&Ye (Orr [ 13 I). The Galerkin or weak form of the 
normal stress boundary condition is defined as 

Fi z 1 ,$(2H - Nconn : T) f ds* = 0, (19) 
- s, 

where s* is a unit radius reference circle and f is a weighting function introduced for 
convenience in integrating the curvature term by parts. Then with (18) and the 
surface divergence theorem (Weatherburn (29]), Eq. (19) becomes 

Fi = [ (n e v*xi + x’(2H), n * n, - xlNc,nn :Tf) a's, - \ xin . m, ds 
.’ 2. -Es. 

xi (20) 
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where (2H), is the curvature of the reference surface, i.e., unity in this case; and n* 
is a unit normal to the reference surface, i.e., II* = e,. Integrating the curvature term 
by parts in (19) is also possible with a constant weighting function as Orr [ 13 ] 
showed, but integration on a suitable reference surface is essential to the 
simplification attendant on integration by parts. The boundary conditions for the free- 
surface position are the same as before: 

At the separation line f = constant, 

At the outflow section h, = 0. 
(21) 

At the matching point P, in Figs. 5 and 6 it is convenient to have four unknowns. 
two associated with the pair of Hermite cubic polynomial basis functions in the 
surface element to the left, and two associated with the one to the right. Besides the 
two matching conditions at Eq. (15), there are two normal stress equations associated 
with the matching point: 

Fi s jP’~~(x)(2H - N,-,nn : T) dx + r”,$(B)(ZH- N,-,nn : T)fdB 
. PA “PO 

= 0, (22) 

where i takes on values 1 and 2 corresponding to the basis functions of the Hermite 
cubits at the matching node. 

Inside the flow domain of Region B a polar parametrization could be used, in 
which case there would be a set of matching conditions at the interior nodes along the 
matching line. However, there appears to be no advantage in using a polar 
parametrization there: it would merely alter weightings in the isoparametric mappings 
into the fixed (t, v)-domain. Hence we retain the Cartesian parametrization 
throughout the interior. 

It is easy to confirm that the new formulation becomes exactly the same as the 
original, ordinary one when the coordinate systems used to parametrize Regions A 
and B are the same. It is also not hard to see how to combine other free-surface 
representations to advantage for other free-surface problems. 

4. NEWTON ITERATION FOR THE REFORMULATION 

The set of nonlinear algebraic equations consists of x- and y-components of 
momentum equations (3) for the interior nodes; x-components of (3) with natural 
boundary conditions (6) at the outlet; (16) and (13) along free-surface sides of 
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elements adjacent to the free surface; (5) for every pressure node; (19) for free- 
surface nodes except for boundary condition (20) nodes and matching point P,,; and 
(15) and (22) for the matching point P,. The set can be written in terms of a vector 
of residuals R = (Mi, Ci,K,, F,., G!: 

R(a, P> = 0, f??) ,\-a 

where Q z ( ui, L’~, pi\ and p = (hi, fi). Then the well-known Newton process is 

(“,:I:)= (i:) -J-‘R(a,,P,h (24) 

where J = (ZR/aa, aR/i$). Now, in this Jacobian matrix the components of 2R/L’a 
arise in any fixed boundary flow problem and there is no difficulty in calculating 
them. The difliculty in free-surface problems has been the accurate calculation of the 
components of 2R/ap, i.e., sensitivities of all the residuals throughout the flow 
domain to the location and the shape of the meniscus, as given by the position of the 
free-surface nodes of the tessellation. 

The residuals (apart from the Ki and G) are expressed by volume and area 
integrals in the x-y plane. The integrands are functions of the coordinates x and j, 
and of the nodal values a and p in the finite element expansions. However, because p 
determines the shapes of all of the elements except those within the slot, x and L’ in 
most of the integrands depend on p, a quite troublesome feature. 

Especially tough is the evaluation of derivatives for the Jacobian matrix, because 
the residuals of the momentum and continuity equations depend on p not only 
through the integrands but also through the limits of integration, i.e., the element 
domains. In the original formulation, Silliman sidestepped this difficulty by assuming 
that the volume area integral terms do not depend on p through the element domains, 
on the grounds that the dependence ought to disappear as the continuity and 
Navier-Stokes equations come to be well satisfied localiy. This assumption approx- 
imates more closely the truth as a,, and p,, approach a solution, but can be far from 
correct in the early stages of an iteration. Computational tests with the original code 
revealed that the rate of convergence with this approximation is highly sensitive to 
parameter values (IHe, IV,, , and Q) and seldom approaches the quadratic asymptotic 
convergence that is characteristic of Newton iteration (cf. Fig. 17 below). 

This difficulty can be overcome by correctly evaluating the derivatives in the 
Jacobian. The volume (area) integral terms can be handled properly with the general 
transport theorem, or entirely equivalently with the following scheme which is 
couched in terms of the isoparametric mappings of elements into the fixed (& v)- 
domain (Saito and &riven [ 19 I), as shown in Fig. 3. With the transformation 
(x. ;)) -+ (r, 7) given by Eq. (2), where the coordinates X,(p), Yi@) of the ith node ci 
an element depend on the free-surface location p, an area integral from a two- 
dimensional flow, 

+, P) = f F(x, Y, a, P) df (25) 
“.4(p) 
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can be expressed as 

Z(a, P> = 1 F(-@, rl; P>, Y(t, 65 B>, a9P) VI dT drl, 
A0 

where X is the Jacobian of the transformation, viz., 

(26) 

(27) 

If the integrand F in Eq. (25) contains 8/%x or LJ/+ 
by 

-=ZiC+f!Z a - 
ax axay axaq’ 

a ara aq a 
$=gJar+y$ 

where the coefficients can be extracted from 

these operators are transformed 

(28) 

[ 

adax aypy 1 1 

[ 

wv -axlaq 
wax aday =f-l=~ -ay/ay 1 ax/a< * (2% 

Thus the integrand F 1x1 in Eq. (26) can be completely freed of dependence on the 
original coordinates. The domain of integration A, is the fixed square, and ( and q 
are independent of B. Hence the needed derivative is simply 

and this is easily enough worked out analytically. 
The line integrals occurring in the momentum equations (3) and normal stress 

conditions (19) and (22) can be handled similarly. By converting from arc length ds 
to 

dx=(l +h;)-“*dS in Region A, 

d0 = (f’ + fi)- “* ds in Region B 
‘(31) 

the limits of integration become fixed values of B and the line integrals take the form 

L(a, p) = I”“” 9(x, ~(-5 B>, a7 IV do in Region A 
’ X” 

(32) 
= 

r on”W(& B), ~(0; B), a, P) de in Region B. 
- 0” 
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When these are mapped to the 5-q domain they become 

L(a,p)= [I .9(&q= l,a,P)X”I.\AX”dC; in Region A 
I 

(33) 
= (‘““Q(((O),q= l,a,P)dO in Region B. 

-’ 0, 

The needed derivatives with respect to B are then 

l3i. -I Z@Z, La,P)x,+, -x, -1 
afl _j., ap 2 

dt in Region A 

en.1 = 
r 

X(<(e), 1, a, P) de 
(34) 

3 
in Region Bt 

_ et, 

where c(0) describes the mapped surface points, which lie along q= 1. 
The details of implementing Newton iteration with the correct Jacobian based on 

Eqs. (30) and (34) will be recorded elsewhere. 

5. NEW RESULTS FOR SLOT-COATING FLOW 

The new formulation, with many borrowings from Silliman’s code, was 
programmed for the CDC CYBER 74/172 at the University of Minnesota. The 
resellation used is shown in Fig. 5. There are 42 elements, 203 velocity nodes, 60 
pressure nodes and 23 free-surface nodes. The number of unknowns is 5 12. The 
Frontai routine (Hood [8]) was used to solve the simultaneous linear equation set. 
The amount of core memory required in the whole program was about 60K octal 
words, and the amount of out-of-core memory for the Frontal routine, originally 
designated for disc memory, was about 150K octal words. Around g set were needed 
for one iteration. 

Full Newton iteration was used, as outlined in the preceding section. The 
convergence criterion was normally that the maximum change in nodal vaiues of 
velocity, pressure and free-surface coordinate be less than 10 ’ (the criterion was 
tightened only during studies of convergence rate). The nearest available solution was 
ordinarily used for the first approximation with a new set of parameters; first-order 
continuation was sometimes used, as mentioned below. When the convergence 
criterion was not reached in six iterations, the change in parameter was decreased; 
the parameter changes were usually such that convergence was reached in five 
iterations. The parameter range investigated was 0 < NRr < 400, 0.0 1 < IVY, < 20 and 
0.12 < Q < 0.5. When the flow rate Q is so iow, or the capillary number .V,, so high, 
that the separation angle is less than about 20”: rhe corner element adjoining the 
separation line grows so deformed as to make the result unreliable in its 
neighborhood. This is the chief limitation on the parameter range. As to Reynolds 
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FIG. 7. Slot-coating flow with non-invading meniscus. N,, = 50, Nca = 0.125, Q = 0.25 and 
y = 129.9”. 

number. there were no difficulties in calculation up to NRe = 400, the highest value 
attempted so far. 

Calculated free surfaces and fields of velocity vectors are plotted in Fig. 7, an 
example of a non-invading meniscus, and in Fig. 8, an example of an invading one. 
The former agrees with Silliman’s result based on the original formulation where 
nodes coincide. Features of particular interest in both bases are the extent and 
strength of recirculating flow, the separation angle w  (cf. Fig. 1) at the corner where 
the contact line is fixed to the solid, the location of the stagnation line on the free 
surface, and the length of the transition zone in which the flow relaxes into its 
asymptotic uniform velocity state and the free surface relaxes to its asymptotic height 
above the moving web. 

The relaxation is predicted to be exponential by Higgins’ theory 161, which 
gives the relaxation rates sufficiently far downstream in terms of NRe, N,,, and Q. 
Depending on the combination of these parameters, the asymptotic behavior of the 
meniscus is reached in a distance of a few tenths of the slot width to twice the slot 
width. Figure 9 shows the agreement of the finite element results and the asymptotic 
theory. 

The shape of the meniscus near the separating line is a tougher problem. When 
capillary number Nc, is much less than unity, it has often been approximated as a 
static meniscus (Landau and Levich [ 111, Ruschak [ 161, Higgins and Striven [lo]). 
We will discuss the validity of this assumption later, at Fig. 14. Here we illustrate in 
Figs. 10-12 how meniscus shape depends on the parameters, and in Figs. 13a-c how 
the angle of separation ly and the mean curvature l/r near the contact line change as 
the parameters vary. The separation angle is the angle between the normal to the slot 
wall and the normal to the free surface at the contact line (thus it is a type of contact 

. . . . . . . . . . . 

FIG. 8. Slot-coating invading meniscus. NRe = 50, N,., = 0.125, Q = 0.13 and y = 50.7”. 
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FIG. 9. Decay of film height downstream from the slot exit. Straight lines are predictions of Hiygins’ 
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FIG. 12. Dependence of meniscus profile on Reynolds number, N,, 
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angle). The mean curvature, which can be regarded as the reciprocal of a radius of 
curvature r, is evaluated as the arithmetic average of the curvatures at the free-surface 
nodes in the element that abuts the contact line. 

It is evident from Figs. IO, 11, 13a and b that as dimensionless flow rate Q 
decreases or capillary number Nc, increases, the separation angle v falls and the 
mean curvature l/r rises: the meniscus tends to invade the slot and the film to relax 
in a shorter distance downstream. The effect of Reynolds number NRC is more 
complicated. As it increases, the rate of meniscus relaxation falls, as seen in Fig. 12, 
but neither the separation angle nor the mean curvature changes monotonically, as 
seen in Fig. 13~. How to interpret the maximum and the minimum is not clear yet. 

All of the results make it plain that the separation angle falls as Q decreases or 
NC0 increases. Generally the smaller the separation angle, the less the tendency for 
the meniscus to be pinned to the corner at the slot exit (down to 20”, at least, where 
the finite element solution becomes locally unreliable, as pointed out above). It 
appears that there is a critical separation angle-it might be as low as O”-which is 
dictated by wetting behavior of the liquid on the slot wall and below which the 
meniscus no longer attaches to the corner at the slot exit. Such a limit would be 
crucial to the slot-coating process (the sensitivity analysis in the next section provides 
more information). That slot width puts a bound on meniscus curvature was already 
deduced by Ruschak 1161 (cf. Higgins and Striven 171) with a quasi-static approx- 
imation, i.e., the meniscus shape is an arc of circle having a constant curvature 
predicted by Landau and Levich’s [I 11 approximation. In other words, the radius of 

(Cl N& 

FIG. 13. Dependence of separation angle, w, and local curvature war separation, I/r, on (a) dimen- 
sionless flow rate, QT (b) capillary number, NCar and (c) Reynolds number, A’,,. 
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F!G. 14. (a) The definition of inclination 6. (b) the variation of curvature versus inclination, Q. along 

!hc free surface for zero Reynolds number. 

curvature cannot be less than (d - h,)/2, where d is gap width and h, is a final 
thickness, and the separation angle is 0” in the limiting situation. The variation of 
curvature along the free surface is shown in Fig. 14b. The abscissa is the angle of 
inclination of the normal to the free surface from the y-direction, as depicted in 
Fig. 14a. Plainly, a large portion of the meniscus has constant curvature when 
capillary number, N,, , is very small; but the curvature varies more and more rapidly 
as N,., increases. This means that the assumption of Ruschak and Higgins and 
Striven is reasonable when IV,., is very small, but is less and less correct and their 
criteria are increasingly overstrict as N,, increases. The limit predicted here by finite 
element analysis has the same physical origin as the simple quasi-static approx- 
imation but takes account of dynamic effects and is accurate as long as the critical 
separation angle is more than 20”. However, a more refined analysis may be 
necessary when the critical separation angle is less than 20”. Although the curvature 
changes along the free surface in Fig. 14b, it is nearly constant between the most 
upstream place of the meniscus, where 4 = 90”, and the separation line. Xn an 
interesting attempt to approximate the effect of viscous stress on the meniscus, Coyne 
and Eirod [4 ] calculated an entire meniscus shape by assuming that the separation 
angle IV is 90’ and the velocity along spines perpendicular to the meniscus is 
parabolic up to the separation line. Their results include the ratios d/h, and r,/d as 
functions of NE (3N,,)“3, where d and h, are as defined above, and rc is the radius 
of meniscus curvature at the separation line. They also extended their calculations to 
cases where w  > 90” by assuming an arc of circle for the meniscus profile between the 
most upstream place and the separation line, and replacing d by the height of the 
most upstream point, h,, and I-~ by the radius of curvature there. This arc-of-circle 
approximation is well supported in the discussion above of Fig. 14. Coyne and Elrod 
also showed that from their assumption of a parabolic velocity profile it follows that 
the height of the stagnation line is three times the final film thickness, i.e., h,/h.,,, = 3. 
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TABLE I 

Dependence of h,/h,, r,/h,, and h,jh, on Separation Angle w for 
N,, = 0 and N,, = 0.125 (N = 0.72) in the Finite Element Calculation 

Q(=h,) 
;I 

0.13 36.49 
0.14 51.54 
0.15 62.46 
0.16 71.24 
0.17 78.66 
0.18 85.05 

4 

------ 
0.6822 
0.7338 
0.7862 
0.8394 
0.8Y21 
0.94YO 

- -- -__-. 
5.2476 0.3850 0.5595 0.3444 
5.2414 0.4207 0.5733 0.3709 
5.2413 0.4562 0.5802 0.3990 
5.2480 0.4909 0.5847 0.4280 
5.2480 0.5308 0.5950 0.4600 
5.2720 0.5833 0.6146 0.4885 

hlh:, 

---- 
2.649 
2.650 
2.660 
2.675 
2.706 
2.714 

In order to test the validity of Coyne and Elrod’s approximations, the results in 
Table I were extracted from finite element solutions for NRe = 0 and N,:, = 0.125. The 
curvature l/r, (= 2H) was calculated as the average of the value from Eq. (18) and 
the mean value implied by Eq. (19), viz., Ncann : T; the difference between these two 
estimates proved never to exceed 2% of the average. From Table I it can be seen that 
h,/h, and h,/h, are almost independent of the separation angle w, but rc/h, is 
somewhat dependent, changing by 10% as v increases from 36.5 to 85.1” in the one 
case. That the values of h,/h, are around 2.7 and not 3 is a plain indication that 
velocity profile departs from parabolic. Coyne and Elrod’s approximation and the 

FIG. 15. Dependence of d/h,, r,/d and h,/h, on N and N,, for N,,, = 0 and I = 90”. Broken lines 
are Coyne and Elrod’s [ 4 ] approximate theory. 
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finite element solutions when the separation angle is 90” are compared in Fig. 15. In 
the finite clement calculations ly was raised close to 90” by adjusting the flow rate QY 
and values for v/ = 90° were extrapolated from the two solutions with separation 
angles closest to 90”. Finite element solutions which have no stagnation line on the 
meniscus of course lack points of h,/h, in Fig. 15. With increasing capillary number 
the meniscus grows more and more sharply bent near the separation line-the static 
contact line. The difference between two estimates of curvature at the element there 
rises from 2 to 5% when N,, = 5 (N = 2.47). This means that the result becomes iess 
reliable and a liner tessellation is needed near the static contact line when N,, > 5; 
we have not proceeded to refine the finite element mesh in this paper, however. From 
Fig. 15 the conclusion is that at least when 0.01 < N,, < 5 Coyne and Elrod’s 
approximation for practical purposes is close enough to the more accurate finite 
element solutions, so far as meniscus shape is concerned. Evidently their assumption 
of parabolic velocity profile along spines perpendicular to the meniscus leads to 
reasonable approximations of meniscus shapes. 

By the way. the normal stress, which is balanced by the ambient pressure through 
the capillary force, is expressed as the sum of normal viscous stress and pressure: 

Tn,=-ptr,,=-p+2%. (35) 

where t’, denotes the velocity normal to the free surface and n the distance from it. 
The pressure contribution, -p, and the total T,,, , are plotted in Figs. 16a and b. The 
abscissa is 4 as shown in Fig. 14a. In both cases the separation angle w  is less than 
90”. However, in Fig. 16b N,, and Q are smaller giving a wider recirculation zone 
and higher stress level than those in Fig. 16a. We can see that the normal viscotis 
force is acting inward in the region near the separation line and outward in the region 
of exponentially thinning film in both cases. 

Convergence behavior is shown in Fig. 17 for Iv,, = 50, Al’<,., = 0.125, and five 
decrements in flow rate Q from 0.3 to 0.13. Iteration at each new value was started 
from the previous solution. Figure 17a shows that the convergence rate, 
log(/ldaili. I/(ldajli), where I(da(li is the maximum change of any unknown between 
the (i - 1)st and ith iterations, depended strongly on Q in the original formulation. 
Indeed, as Q decreased the convergence became worse and worse until, below 
Q = 0.13, no domain of convergence could be found and so the calculation came to a 
halt. The trend was the same as N,, rose . 

Also evident in Fig. 17a is a tendency toward first-order convergence, i.e., the same 
convergence rate at each iteration, or a straight line in the figure. The asymptotic 
convergence of Newton iteration is, however, second order (Isaacson and Keller t9), 
Rheinboldt [ 151). But when the Jacobian matrix is not entirely correct, convergence 
is generally only first order, and the greater the error in the Jacobian, the poorer the 
convergence rate (Bixler 11 I). Figure 17a is prima facie evidence that the Jacobian 
was not complete in Silliman’s original formulation. 
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----? ---- --___ 

FIG. 16. The variation or pressure, -p, and normal stress, T,, =-p + r,,, versus inclination. 9, 
along the free surface for zero Reynolds number, (a) capillary number, IV,., = 0.4 and dimensionless 
flow rate, Q = 0.25, and (b) X,., = 0.125 and Q = 0.15. 

In contrast, Fig, 17b reveals that the new formulation tends toward second-order 
convergence, i.e., IJdalli., , < A, I/da//f, where A, is a constant with some bounded 
value. Moreover, second-order convergence is attained at all values of flow rate Q. 
The conclusion is that the Jacobian matrix is complete and correctly calculated. That 
this is valuable information is clear from the next section. 

(a) (b) 

2 

g 10-6, I I MI 

N”M&R OF ITERATIONS 
15 0 

NUMBER OF ITER%IONS 

FIG. 17. Convergence behavior of (a) Silliman’s formulation and (b) this study, where the complete 
matrix is used. 
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6. SENSITIVITY COEFFICIENTS AND FIRST-ORDER CONTINUATION 

The wealth of information in the Jacobian matrix of a solution found by Newton 
iteration is well illustrated by the coefficients of sensitivity of the solution to the 
parameters, the boundary conditions, or the boundary shape (Silliman and 
Striven (22]+ Brown ef al. [2j). To review the formulas for sensitivity coefficients 
with respect to the parameters (NRe, NcO, Q}, which are conveniently represented by 
the vector X, let the vector a now represent the entire set of unknowns 
{ uj, L’~, pi, hi. J;:). Recall that R is the vector of residuals. The equation set to be 
solved is 

R(a;n)=O. (36) 

Following Silliman and Striven [22) we have from the relationship among 
neighboring solutions 

which in matrix form is 

Jd, + s, = 0, (38) 

where d, z !aai/an,n] is the sensitivity vector of the nodal unknowns and 
s, = \c?R/&,J is the sensitivity vector of the residuals. 

Because the Jacobian matrix J is already calculated in the Newton iteration 
process and s, is easily calculated, d, can be found with little additional 
computation. For example, recorded in Fig. 18 is the sensitivity of the pressure at the 
intersection of the slot wall with the inflow boundary, and of the position of the free 
surface along the polar arm that is the nearest neighbor to the separation line. The 
dimensionless pressure at the inflow boundary (which was located at x = 1 owing to 

sf = 0.0001 
8 ke 

= : - 3.0504 
S be 

Lc ;,.,2 
s NCo 

2.5 = - 0,938 

+& = -2.69 “2 6. = 161.6 

f. LOCAL POLAR ARM LENGTH AT @=i64.Y 

I” DIMENSIONLESS PRESSURE AT x:1 

FK;. 18. Sensitivity coeffkients evaluated from Jacobian matrix. 
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the memory capacity available in this calculation, but was still sufficiently upstream 
that the flow at it is nearly-more than 98% in this case-fully developed) will 
decrease if Q is reduced or if either NRe or N,, is increased; it is well to point out 
that the dimensionless pressure p is related to the dimensional p” by p s (d/pU)p*. 
In the same circumstances the length of the polar arm will increase further into the 
slot and the separation angle at the contact line will fall. Given a critical value for the 
separation angle, one could use the sensitivity coefficients to estimate critical 
combinations of the parameters NRe, NC, and Q. 

The sensitivity vector is the basis for first-order continuation, a process akin to 
Euler’s method for ordinary differential equations. Continuation provides an 
improved first estimate to the new solution a(,‘+ i) for parameter values ncstl’, given 
the solution a (‘V). (“) for parameter n . 

a(& t 1) = a(lv) + d&r- 1) _ nj;l”)e 
(39) 

Trial calculations suggest that when parameter values are changed so that no more 
than six iterations are required for convergence at the level of IldczlJ < 10m4, lirst- 
order continuation will ordinarily lead to convergence with, on the average, almost 
one fewer iteration. The optimal combination of continuation and iteration limitation 
to trace out a curve in parameter space is an open and important issue. 

7. CONCLUSION 

The results testify to the value of finding out why an iteration scheme fails to 
converge, or converging fails to approach its theoretical asymptotic order of 
convergence. In traditional numerical simulation one “fiddles’‘-one proceeds by 
experience, intuition, and trial-to get convergence and often is happy to arrive at 
any procedure that converges in 10 to 30 iterations from some sort of initial guesses. 
Convergence behavior is seldom thought worth systematic investigation to understand 
in terms of available theory. In modern theoretical study and prediction by means of 
computer-aided functional analysis, as with the subdomain/Galerkin weighted 
residual method and finite element basis functions, one chooses an analyzed iteration 
scheme and confirms that it performs as it should, or traces down the reasons it does 
not. The scheme of choice is Newton iteration, for which it is important to verify that 
the correct Jacobian is being calculated, by establishing that the iteration approaches 
second-order convergence, as has now been done. 

Research on convergence behavior of Silliman’s [23] pioneering finite element 
analysis of viscous free-surface film flows has led to two major improvements: 

1. Combining simple coordinate parametrizations of parts of a free surface, as 
Cartesian spines and polar spines are combined here, is a convenient way to 
overcome the breakdown of single coordinate parametrizations, as, for instance, the 
Cartesian spines employed in Silliman’s original formulation, which becomes singular 
when the meniscus turns through 90” or more. Such a combination not only extends 
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the accessible parameter range in the study of slot coating, but also makes possible 
the study of a variety of coating flows such as slide or curtain coating. 

2. Employing newly derived general formulas for the derivatives of finite 
element residuals with respect to free-surface locations along the spines makes 
possible the calculation of the complete and correct Jacobian matrix for Newton 
iteration. which not only can lead to much more rapid, second-order convergence. but 
also provides thereby a criterion for the correctness of the Jacobian of the solution, 
which contains a wealth of useful information about the solution. The formulas are 
generally applicable to free-surface and moving boundary situations. 

With these improvements the analysis of slot coating has been extended to higher 
capillary number and lower flow rates (i.e., greater pressure difference app!ied to 
oppose the obligatory Couette flow), at which the meniscus becomes more highly 
bent and the zone of the slow flow and reversed flow grows larger. Interesting 
features include the variation of the separation angle or contact angle at the line 
where the meniscus attaches to the corner of the slot; the departure of meniscus 
profile near that iine from an arc-of-circle, which has often been used to approximate 
it: the location of the stagnation line on the meniscus; the distributions of pressure 
and viscous normal stress along the meniscus; and the length of the zone of flow 
relaxation into the asymptotic, fully developed regime downstream. The results show 
that at high capillary number and low metering rate the meniscus invades into the 
slot until it would have to make a separation angle that is iower than physically 
possible; i.e., the meniscus can no longer attach to the slot. This illustrates in a 
dynamic regime the fact that is aiready established for the quasi-static meniscus 
regime: geometric constraints put bounds on meniscus curvature (Higgins and 
Striven 17 1). 
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